Indian Statistical Institute Back Paper Topology IV - MMath II

Max Marks: 100

Time: 180 minutes.

[10]

Throughout, $U, V \dots$ will denote open subsets in some Euclidean space.

(1) Show that there exist isomorphisms

$$\mathbb{R}^3 \xrightarrow{i} \operatorname{Alt}^1(\mathbb{R}^3), \mathbb{R}^3 \xrightarrow{j} \operatorname{Alt}^2(\mathbb{R}^3)$$

given by $i(v)(w) = \langle v, w \rangle$ and $j(v)(w_1, w_2) = \det(v, w_1, w_2)$. Here $\langle -, -\rangle$ denotes the usual inner product on \mathbb{R}^3 . [10]

- (2) Construct the de Rham complex $\Omega^*(U)$ of U. Verify that this is a cochain complex. [20]
- (3) Compute $H^0(U)$.
- (4) Let $A \subseteq \mathbb{R}^n$ be a closed subset. Let $R : \mathbb{R}^{n+1} A \longrightarrow \mathbb{R}^{n+1} A$ denote the reflection $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, -x_{n+1})$. Show that the induced homomorphism $R^* : H^{p+1}(R^{n+1} - A) \longrightarrow H^{p+1}(R^{n+1} - A)$ is multiplication by -1 for all $p \ge 0$. [15]
- (5) Given a closed subset $A \subseteq \mathbb{R}^n$ and distinct points $p, q \in \mathbb{R}^n$ we say that A separates p from q if p and q belong to different components of $\mathbb{R}^n A$. Let A and B be two disjoint closed subsets of \mathbb{R}^n . Given two distinct points p, q in $\mathbb{R}^n (A \cup B)$ show that if neither A nor B separates p from q, then $A \cup B$ does not separate p from q. [15]
- (6) What is an orientation form on a manifold? If ω_i , i = 1, 2 is an orientation form on the manifold M_i , i = 1, 2 and $\pi_i : M_1 \times M_2 \longrightarrow M_i$, i = 1, 2 is the projection, then show that $\pi_1^* \omega_1 \wedge \pi_2^* \omega_2$ is an orientation form on $M_1 \times M_2$. [10]
- (7) Let $n \ge 2$. Compute $H^p(\mathbb{R}P^{n-1}), p \ge 0$. [20]